extension | φ:Q→Aut N | d | ρ | Label | ID |
C22.1(C2×Dic6) = D4⋊5Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C22 | 96 | | C2^2.1(C2xDic6) | 192,1098 |
C22.2(C2×Dic6) = D4⋊6Dic6 | φ: C2×Dic6/Dic6 → C2 ⊆ Aut C22 | 96 | | C2^2.2(C2xDic6) | 192,1102 |
C22.3(C2×Dic6) = C2×C12.53D4 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.3(C2xDic6) | 192,682 |
C22.4(C2×Dic6) = C23.8Dic6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.4(C2xDic6) | 192,683 |
C22.5(C2×Dic6) = C23⋊3Dic6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C22 | 48 | | C2^2.5(C2xDic6) | 192,1042 |
C22.6(C2×Dic6) = C42.88D6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.6(C2xDic6) | 192,1076 |
C22.7(C2×Dic6) = C42.90D6 | φ: C2×Dic6/C2×Dic3 → C2 ⊆ Aut C22 | 96 | | C2^2.7(C2xDic6) | 192,1078 |
C22.8(C2×Dic6) = C2×C24.C4 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.8(C2xDic6) | 192,666 |
C22.9(C2×Dic6) = C23.9Dic6 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C22 | 48 | 4 | C2^2.9(C2xDic6) | 192,684 |
C22.10(C2×Dic6) = C42.274D6 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.10(C2xDic6) | 192,1029 |
C22.11(C2×Dic6) = C6.72+ 1+4 | φ: C2×Dic6/C2×C12 → C2 ⊆ Aut C22 | 96 | | C2^2.11(C2xDic6) | 192,1059 |
C22.12(C2×Dic6) = (C2×C12)⋊Q8 | central extension (φ=1) | 192 | | C2^2.12(C2xDic6) | 192,205 |
C22.13(C2×Dic6) = C6.(C4×Q8) | central extension (φ=1) | 192 | | C2^2.13(C2xDic6) | 192,206 |
C22.14(C2×Dic6) = C2.(C4×Dic6) | central extension (φ=1) | 192 | | C2^2.14(C2xDic6) | 192,213 |
C22.15(C2×Dic6) = Dic3⋊C4⋊C4 | central extension (φ=1) | 192 | | C2^2.15(C2xDic6) | 192,214 |
C22.16(C2×Dic6) = C12⋊4(C4⋊C4) | central extension (φ=1) | 192 | | C2^2.16(C2xDic6) | 192,487 |
C22.17(C2×Dic6) = (C2×Dic6)⋊7C4 | central extension (φ=1) | 192 | | C2^2.17(C2xDic6) | 192,488 |
C22.18(C2×Dic6) = C4×Dic3⋊C4 | central extension (φ=1) | 192 | | C2^2.18(C2xDic6) | 192,490 |
C22.19(C2×Dic6) = (C2×C42).6S3 | central extension (φ=1) | 192 | | C2^2.19(C2xDic6) | 192,492 |
C22.20(C2×Dic6) = C4×C4⋊Dic3 | central extension (φ=1) | 192 | | C2^2.20(C2xDic6) | 192,493 |
C22.21(C2×Dic6) = C42⋊10Dic3 | central extension (φ=1) | 192 | | C2^2.21(C2xDic6) | 192,494 |
C22.22(C2×Dic6) = C42⋊11Dic3 | central extension (φ=1) | 192 | | C2^2.22(C2xDic6) | 192,495 |
C22.23(C2×Dic6) = C24.55D6 | central extension (φ=1) | 96 | | C2^2.23(C2xDic6) | 192,501 |
C22.24(C2×Dic6) = C24.57D6 | central extension (φ=1) | 96 | | C2^2.24(C2xDic6) | 192,505 |
C22.25(C2×Dic6) = C24.58D6 | central extension (φ=1) | 96 | | C2^2.25(C2xDic6) | 192,509 |
C22.26(C2×Dic6) = C12⋊(C4⋊C4) | central extension (φ=1) | 192 | | C2^2.26(C2xDic6) | 192,531 |
C22.27(C2×Dic6) = (C4×Dic3)⋊8C4 | central extension (φ=1) | 192 | | C2^2.27(C2xDic6) | 192,534 |
C22.28(C2×Dic6) = (C4×Dic3)⋊9C4 | central extension (φ=1) | 192 | | C2^2.28(C2xDic6) | 192,536 |
C22.29(C2×Dic6) = C4⋊C4⋊6Dic3 | central extension (φ=1) | 192 | | C2^2.29(C2xDic6) | 192,543 |
C22.30(C2×Dic6) = C2×C6.C42 | central extension (φ=1) | 192 | | C2^2.30(C2xDic6) | 192,767 |
C22.31(C2×Dic6) = C24.73D6 | central extension (φ=1) | 96 | | C2^2.31(C2xDic6) | 192,769 |
C22.32(C2×Dic6) = C24.75D6 | central extension (φ=1) | 96 | | C2^2.32(C2xDic6) | 192,771 |
C22.33(C2×Dic6) = C2×C4×Dic6 | central extension (φ=1) | 192 | | C2^2.33(C2xDic6) | 192,1026 |
C22.34(C2×Dic6) = C2×C12⋊2Q8 | central extension (φ=1) | 192 | | C2^2.34(C2xDic6) | 192,1027 |
C22.35(C2×Dic6) = C2×C12.6Q8 | central extension (φ=1) | 192 | | C2^2.35(C2xDic6) | 192,1028 |
C22.36(C2×Dic6) = C2×C12⋊Q8 | central extension (φ=1) | 192 | | C2^2.36(C2xDic6) | 192,1056 |
C22.37(C2×Dic6) = C2×C4.Dic6 | central extension (φ=1) | 192 | | C2^2.37(C2xDic6) | 192,1058 |
C22.38(C2×Dic6) = C22×Dic3⋊C4 | central extension (φ=1) | 192 | | C2^2.38(C2xDic6) | 192,1342 |
C22.39(C2×Dic6) = C22×C4⋊Dic3 | central extension (φ=1) | 192 | | C2^2.39(C2xDic6) | 192,1344 |
C22.40(C2×Dic6) = (C2×C4)⋊Dic6 | central stem extension (φ=1) | 192 | | C2^2.40(C2xDic6) | 192,215 |
C22.41(C2×Dic6) = C6.(C4⋊Q8) | central stem extension (φ=1) | 192 | | C2^2.41(C2xDic6) | 192,216 |
C22.42(C2×Dic6) = (C2×C4).Dic6 | central stem extension (φ=1) | 192 | | C2^2.42(C2xDic6) | 192,219 |
C22.43(C2×Dic6) = (C22×C4).85D6 | central stem extension (φ=1) | 192 | | C2^2.43(C2xDic6) | 192,220 |
C22.44(C2×Dic6) = C23⋊2Dic6 | central stem extension (φ=1) | 96 | | C2^2.44(C2xDic6) | 192,506 |
C22.45(C2×Dic6) = C24.17D6 | central stem extension (φ=1) | 96 | | C2^2.45(C2xDic6) | 192,507 |
C22.46(C2×Dic6) = C24.18D6 | central stem extension (φ=1) | 96 | | C2^2.46(C2xDic6) | 192,508 |
C22.47(C2×Dic6) = (C2×Dic3)⋊Q8 | central stem extension (φ=1) | 192 | | C2^2.47(C2xDic6) | 192,538 |
C22.48(C2×Dic6) = (C2×C12).54D4 | central stem extension (φ=1) | 192 | | C2^2.48(C2xDic6) | 192,541 |
C22.49(C2×Dic6) = (C2×C12).55D4 | central stem extension (φ=1) | 192 | | C2^2.49(C2xDic6) | 192,545 |